Copied to
clipboard

G = C22⋊Q8.D5order 320 = 26·5

2nd non-split extension by C22⋊Q8 of D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.63D10, (C2×C20).75D4, C22⋊Q8.2D5, (C2×Q8).25D10, Q8⋊Dic512C2, C20.Q837C2, C10.71(C2×SD16), (C2×C10).16SD16, (C22×C10).89D4, C22.6(Q8⋊D5), C20.187(C4○D4), C4.93(D42D5), (C2×C20).362C23, C20.55D4.6C2, (C22×C4).124D10, C23.60(C5⋊D4), C55(C23.47D4), (Q8×C10).43C22, C4⋊Dic5.337C22, C2.14(D4.9D10), C10.116(C8.C22), (C22×C20).166C22, C10.80(C22.D4), C2.14(C23.18D10), C2.8(C2×Q8⋊D5), (C5×C22⋊Q8).1C2, (C2×C10).493(C2×D4), (C2×C4).53(C5⋊D4), (C2×C4⋊Dic5).38C2, (C5×C4⋊C4).110C22, (C2×C4).462(C22×D5), C22.168(C2×C5⋊D4), (C2×C52C8).112C22, SmallGroup(320,670)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C22⋊Q8.D5
C1C5C10C20C2×C20C4⋊Dic5C2×C4⋊Dic5 — C22⋊Q8.D5
C5C10C2×C20 — C22⋊Q8.D5
C1C22C22×C4C22⋊Q8

Generators and relations for C22⋊Q8.D5
 G = < a,b,c,d,e,f | a2=b2=c4=e5=1, d2=c2, f2=b, dad-1=ab=ba, ac=ca, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fcf-1=c-1, ce=ec, de=ed, fdf-1=c-1d, fef-1=e-1 >

Subgroups: 334 in 104 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2×C4⋊C4, C22⋊Q8, C52C8, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×C10, C23.47D4, C2×C52C8, C4⋊Dic5, C4⋊Dic5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C22×Dic5, C22×C20, Q8×C10, C20.Q8, C20.55D4, Q8⋊Dic5, C2×C4⋊Dic5, C5×C22⋊Q8, C22⋊Q8.D5
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8.C22, C5⋊D4, C22×D5, C23.47D4, Q8⋊D5, D42D5, C2×C5⋊D4, C23.18D10, C2×Q8⋊D5, D4.9D10, C22⋊Q8.D5

Smallest permutation representation of C22⋊Q8.D5
On 160 points
Generators in S160
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 56)(42 57)(43 58)(44 59)(45 60)(46 51)(47 52)(48 53)(49 54)(50 55)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)(121 136)(122 137)(123 138)(124 139)(125 140)(126 131)(127 132)(128 133)(129 134)(130 135)(141 156)(142 157)(143 158)(144 159)(145 160)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 29 9 24)(2 30 10 25)(3 26 6 21)(4 27 7 22)(5 28 8 23)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 61 46 66)(42 62 47 67)(43 63 48 68)(44 64 49 69)(45 65 50 70)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(81 101 86 106)(82 102 87 107)(83 103 88 108)(84 104 89 109)(85 105 90 110)(91 111 96 116)(92 112 97 117)(93 113 98 118)(94 114 99 119)(95 115 100 120)(121 146 126 141)(122 147 127 142)(123 148 128 143)(124 149 129 144)(125 150 130 145)(131 156 136 151)(132 157 137 152)(133 158 138 153)(134 159 139 154)(135 160 140 155)
(1 49 9 44)(2 50 10 45)(3 46 6 41)(4 47 7 42)(5 48 8 43)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)(81 146 86 141)(82 147 87 142)(83 148 88 143)(84 149 89 144)(85 150 90 145)(91 156 96 151)(92 157 97 152)(93 158 98 153)(94 159 99 154)(95 160 100 155)(101 121 106 126)(102 122 107 127)(103 123 108 128)(104 124 109 129)(105 125 110 130)(111 131 116 136)(112 132 117 137)(113 133 118 138)(114 134 119 139)(115 135 120 140)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 95 14 85)(2 94 15 84)(3 93 11 83)(4 92 12 82)(5 91 13 81)(6 98 16 88)(7 97 17 87)(8 96 18 86)(9 100 19 90)(10 99 20 89)(21 113 31 103)(22 112 32 102)(23 111 33 101)(24 115 34 105)(25 114 35 104)(26 118 36 108)(27 117 37 107)(28 116 38 106)(29 120 39 110)(30 119 40 109)(41 133 51 123)(42 132 52 122)(43 131 53 121)(44 135 54 125)(45 134 55 124)(46 138 56 128)(47 137 57 127)(48 136 58 126)(49 140 59 130)(50 139 60 129)(61 153 71 143)(62 152 72 142)(63 151 73 141)(64 155 74 145)(65 154 75 144)(66 158 76 148)(67 157 77 147)(68 156 78 146)(69 160 79 150)(70 159 80 149)

G:=sub<Sym(160)| (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135)(141,156)(142,157)(143,158)(144,159)(145,160)(146,151)(147,152)(148,153)(149,154)(150,155), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(81,146,86,141)(82,147,87,142)(83,148,88,143)(84,149,89,144)(85,150,90,145)(91,156,96,151)(92,157,97,152)(93,158,98,153)(94,159,99,154)(95,160,100,155)(101,121,106,126)(102,122,107,127)(103,123,108,128)(104,124,109,129)(105,125,110,130)(111,131,116,136)(112,132,117,137)(113,133,118,138)(114,134,119,139)(115,135,120,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,95,14,85)(2,94,15,84)(3,93,11,83)(4,92,12,82)(5,91,13,81)(6,98,16,88)(7,97,17,87)(8,96,18,86)(9,100,19,90)(10,99,20,89)(21,113,31,103)(22,112,32,102)(23,111,33,101)(24,115,34,105)(25,114,35,104)(26,118,36,108)(27,117,37,107)(28,116,38,106)(29,120,39,110)(30,119,40,109)(41,133,51,123)(42,132,52,122)(43,131,53,121)(44,135,54,125)(45,134,55,124)(46,138,56,128)(47,137,57,127)(48,136,58,126)(49,140,59,130)(50,139,60,129)(61,153,71,143)(62,152,72,142)(63,151,73,141)(64,155,74,145)(65,154,75,144)(66,158,76,148)(67,157,77,147)(68,156,78,146)(69,160,79,150)(70,159,80,149)>;

G:=Group( (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135)(141,156)(142,157)(143,158)(144,159)(145,160)(146,151)(147,152)(148,153)(149,154)(150,155), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(81,146,86,141)(82,147,87,142)(83,148,88,143)(84,149,89,144)(85,150,90,145)(91,156,96,151)(92,157,97,152)(93,158,98,153)(94,159,99,154)(95,160,100,155)(101,121,106,126)(102,122,107,127)(103,123,108,128)(104,124,109,129)(105,125,110,130)(111,131,116,136)(112,132,117,137)(113,133,118,138)(114,134,119,139)(115,135,120,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,95,14,85)(2,94,15,84)(3,93,11,83)(4,92,12,82)(5,91,13,81)(6,98,16,88)(7,97,17,87)(8,96,18,86)(9,100,19,90)(10,99,20,89)(21,113,31,103)(22,112,32,102)(23,111,33,101)(24,115,34,105)(25,114,35,104)(26,118,36,108)(27,117,37,107)(28,116,38,106)(29,120,39,110)(30,119,40,109)(41,133,51,123)(42,132,52,122)(43,131,53,121)(44,135,54,125)(45,134,55,124)(46,138,56,128)(47,137,57,127)(48,136,58,126)(49,140,59,130)(50,139,60,129)(61,153,71,143)(62,152,72,142)(63,151,73,141)(64,155,74,145)(65,154,75,144)(66,158,76,148)(67,157,77,147)(68,156,78,146)(69,160,79,150)(70,159,80,149) );

G=PermutationGroup([[(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,56),(42,57),(43,58),(44,59),(45,60),(46,51),(47,52),(48,53),(49,54),(50,55),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120),(121,136),(122,137),(123,138),(124,139),(125,140),(126,131),(127,132),(128,133),(129,134),(130,135),(141,156),(142,157),(143,158),(144,159),(145,160),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,29,9,24),(2,30,10,25),(3,26,6,21),(4,27,7,22),(5,28,8,23),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,61,46,66),(42,62,47,67),(43,63,48,68),(44,64,49,69),(45,65,50,70),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(81,101,86,106),(82,102,87,107),(83,103,88,108),(84,104,89,109),(85,105,90,110),(91,111,96,116),(92,112,97,117),(93,113,98,118),(94,114,99,119),(95,115,100,120),(121,146,126,141),(122,147,127,142),(123,148,128,143),(124,149,129,144),(125,150,130,145),(131,156,136,151),(132,157,137,152),(133,158,138,153),(134,159,139,154),(135,160,140,155)], [(1,49,9,44),(2,50,10,45),(3,46,6,41),(4,47,7,42),(5,48,8,43),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75),(81,146,86,141),(82,147,87,142),(83,148,88,143),(84,149,89,144),(85,150,90,145),(91,156,96,151),(92,157,97,152),(93,158,98,153),(94,159,99,154),(95,160,100,155),(101,121,106,126),(102,122,107,127),(103,123,108,128),(104,124,109,129),(105,125,110,130),(111,131,116,136),(112,132,117,137),(113,133,118,138),(114,134,119,139),(115,135,120,140)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,95,14,85),(2,94,15,84),(3,93,11,83),(4,92,12,82),(5,91,13,81),(6,98,16,88),(7,97,17,87),(8,96,18,86),(9,100,19,90),(10,99,20,89),(21,113,31,103),(22,112,32,102),(23,111,33,101),(24,115,34,105),(25,114,35,104),(26,118,36,108),(27,117,37,107),(28,116,38,106),(29,120,39,110),(30,119,40,109),(41,133,51,123),(42,132,52,122),(43,131,53,121),(44,135,54,125),(45,134,55,124),(46,138,56,128),(47,137,57,127),(48,136,58,126),(49,140,59,130),(50,139,60,129),(61,153,71,143),(62,152,72,142),(63,151,73,141),(64,155,74,145),(65,154,75,144),(66,158,76,148),(67,157,77,147),(68,156,78,146),(69,160,79,150),(70,159,80,149)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I···20P
order12222244444444455888810···101010101020···2020···20
size111122224882020202022202020202···244444···48···8

47 irreducible representations

dim11111122222222224444
type++++++++++++--+-
imageC1C2C2C2C2C2D4D4D5C4○D4SD16D10D10D10C5⋊D4C5⋊D4C8.C22D42D5Q8⋊D5D4.9D10
kernelC22⋊Q8.D5C20.Q8C20.55D4Q8⋊Dic5C2×C4⋊Dic5C5×C22⋊Q8C2×C20C22×C10C22⋊Q8C20C2×C10C4⋊C4C22×C4C2×Q8C2×C4C23C10C4C22C2
# reps12121111244222441444

Matrix representation of C22⋊Q8.D5 in GL6(𝔽41)

100000
010000
001000
0014000
0000400
0000040
,
100000
010000
0040000
0004000
000010
000001
,
100000
010000
001000
000100
0000158
00002326
,
4000000
0400000
0016900
00402500
00003930
0000342
,
010000
4060000
001000
000100
000010
000001
,
36330000
350000
0032000
0003200
00003319
000018

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,23,0,0,0,0,8,26],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,40,0,0,0,0,9,25,0,0,0,0,0,0,39,34,0,0,0,0,30,2],[0,40,0,0,0,0,1,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,3,0,0,0,0,33,5,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,33,1,0,0,0,0,19,8] >;

C22⋊Q8.D5 in GAP, Magma, Sage, TeX

C_2^2\rtimes Q_8.D_5
% in TeX

G:=Group("C2^2:Q8.D5");
// GroupNames label

G:=SmallGroup(320,670);
// by ID

G=gap.SmallGroup(320,670);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,254,219,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=e^5=1,d^2=c^2,f^2=b,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*c*f^-1=c^-1,c*e=e*c,d*e=e*d,f*d*f^-1=c^-1*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽